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1 Introduction

In this chapter, we study probability distributions that are suitable for modelling discrete data, like letters
and words. This will be useful later when we consider such tasks as classifying and clustering documents,
recognizing and segmenting languages and DNA sequences, data compression, etc. Formally, we will be
concerned with density models for X ∈ {1, . . . , K}, where K is the number of possible values for X ; we can
think of this as the number of symbols/ letters in our alphabet/ language. We assume that K is known, and
that the values of X are unordered: this is called categorical data, as opposed to ordinal data, in which
the discrete states can be ranked (e.g., low, medium and high). If K = 2 (e.g., X represents heads or tails),
we will use a binomial distribution. If K > 2, we will use a multinomial distribution.

2 Bernoullis and Binomials

Let X ∈ {0, 1} be a binary random variable (e.g., a coin toss). Suppose p(X = 1) = θ. Then

p(X |θ) = Be(X |θ) = θX(1 − θ)1−X (1)

is called a Bernoulli distribution. It is easy to show that

E[X ] = p(X = 1) = θ (2)

Var [X ] = θ(1 − θ) (3)

The likelihood for a sequence D = (x1, . . . , xN ) of coin tosses is

p(D|θ) =

N
∏

n=1

θxn(1 − θ)1−xn = θN1(1 − θ)N0 (4)

where N1 =
∑N

n=1 xn is the number of heads (X = 1) and N0 =
∑N

n=1(1 − xn) = N − N1 is the number of
tails (X = 0).

The likelihood of a given number of heads N1 out of N trials is

p(N1|N) =

(

N
N1

)

θN1(1 − θ)N−N1 = Bi(θ, N) (5)

where
(

N
N1

)

=
N !

(N − N1)!N1!
(6)

is the number of ways to choose N1 items from N . This is called a Binomial distribution. Note that it
defines a distribution on counts, not on sequences.
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To understand the difference between counts and sequences, it is helpful to consider the following analogy
[Min03]: the sufficient statistics of N samples from a univariate Gaussian are the sample mean and sample
variance; all samples with the same statistics have the same probability; however, the probability of those

statistics is not the same as the probability of the samples that generated the statistics. (For one thing, the
statistics define a 2D joint distribution.) Since data is usually samples, not counts, we will use the Bernoulli
rather than the binomial.

2.1 Maximum likelihood parameter estimation

In this section, we discuss one popular approach to estimating the parameters of a probability density
function. Imagine that we have N samples xn drawn independently from the same distribution, xn ∼ p(x|θ);
this is called an iid (independent, identical distributed) sample, which we will call D (since it represents
our “training” data). One intutively appealing approach to parameter estimation is to find the parameter
setting that makes the data as likely as possible:

θ̂MLE = arg max
θ

p(D|θ) (7)

where p(D|θ) is called the likelihood of the parameters given the data; it is viewed as a function of

theta, since D is fixed, so is often written L(theta). θ̂MLE is called a maximum likelihood estimate
(mle). There are various theoretical reasons why this is a reasonable thing to do, which we will discuss
later.

Since the data D = {x1, . . . , xN}, is iid, the likelihood factorizes

L(θ) =

N
∏

n=1

p(xn|θ) (8)

It is often more convenient to work with log probabilities; this will not change argmax L(θ), since log is a
monotonic function. Hence we define the log likelihood as `(θ) = log p(D|θ). For iid data this becomes

`(θ) =

N
∑

n=1

log p(xn|θ) (9)

The mle then maximizes `(θ).
Now consider the case of MLE for the Bernoulli distirbution. Let X ∈ {0, 1}. Given D = (x1, . . . , xN ),

the likelihood is

p(D|θ) =

N
∏

n=1

p(xn|θ) (10)

=
N
∏

n=1

θxn(1 − θ)1−xn (11)

= θN1(1 − θ)N0 (12)

where N1 =
∑

n xn is the number of heads and N0 =
∑

n(1 − xn) is the number of tails (these counts are
the sufficient statistics). The log-likelihood is

`(θ) = log p(D|θ) = N1 log θ + N0 log(1 − θ) (13)

Solving for d`
dθ

= 0 yields

θ̂ML =
N1

N
(14)

the empirical fraction of heads.
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Suppose we have seen 3 tails out of 3 trials. Then we predict that the probability of heads is zero:

θ̂ML =
N1

N1 + N0
=

0

0 + 3
(15)

This is an example of overfitting and is a result of using maximum likelihood estimation. In this context,
this problem is called the sparse data problem: if we fail to see something in the training set, we predict
that it can never happen in the future, which seems a little extreme. To consider another example, suppose
we have seen 3 white swans and 0 black swans; can we infer all swans are white? No! On visiting Australia,
we may encounter a black swan. This is called the black swan paradox, and is an example of the famous
problem of induction in philosophy. Below we will see how a Bayesian approach solves this problem.

2.2 Bayesian parameter estimation

In the Bayesian approach to statistics all uncertainty (including uncertainty about parameter values) is
modelled with probability theory. Our belief about the value of the parameters θ after having seen data D
can be computed using Bayes rule:

p(θ|D) =
p(D|θ)p(θ)

p(D)
(16)

Here p(D|θ) is called the likelihood of data given the parameters, p(θ) is our prior belief and p(θ|D)
is our posterior belief. The normalization constant

p(D) =

∫

p(D, θ)dθ (17)

is called the marginal likelihood or evidence; this quantity depends on the model that we are using. To
make this explicit (when performing model comparison), we write p(D|M) etc. (All our probabilities are
implicitly conditioned on M , but we drop it from the notation except where necessary.)

The appropriate prior p(θ) to use depends on the nature of the model, and the nature of your prior
knowledge. Somtetimes we choose a conjugate prior, which is a mathematically convenient prior we will
define below. Othertimes we choose a non-informative/ objecive/ reference prior, to let the data
“speak for itself”; often we can approximatge a non-informative prior using a conjugate prior. We will see
examples below.

2.3 Conjugate prior

Since the probability of heads, θ, is uncertain, let us put a (“second order”) probability distribution on this
probability. A Bayesian estimate of θ requires a prior p(θ). It is common to use a conjugate prior, to
simplify the math. A prior is called conjugate if, when multiplied by the likelihood p(D|θ), the resulting
posterior is in the same parametric family as the prior. (We say the model is closed under Bayesian
updating.) Since the Bernoulli likelihood has the form

p(D|θ) ∝ [θN1(1 − θ)N0 ] (18)

we seek a prior of the form

p(θ) = θα1−1(1 − θ)α0−1 (19)

since then the posterior can be gotten by adding the exponents:

p(θ|D) ∝ p(D|θ)p(θ) (20)

∝ [θN1(1 − θ)N0 ][θα1−1(1 − θ)α0−1] (21)

= θN1+α1−1(1 − θ)N0+α0−1 (22)
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α1 α0 Eθ mode θ Var θ
1/2 1/2 1/2 NA ∞
1 1 1/2 NA 0.25
2 2 1/2 1/2 0.08
10 10 1/2 1/2 0.017

Table 1: The mean, mode and variance of various beta distributions. As the strength of the prior, α0 =
α1 +α0, increases, the variance decreases. Note that the mode is not defined if α0 ≤ 2: see Figure 1 for why.

where N1 is the number of heads and N0 is the number of tails. α1, α0 are hyperparameters (parameters
of the prior) and correspond to the number of “virtual” heads/tails (pseudo counts). α = α1 +α0 is called
the effective sample size (strength) of the prior. This prior is called a beta prior:

p(θ|α1, α0) = Beta(θ|α1, α0) =
Γ(α1 + α0)

Γ(α1)Γ(α0)
θα1−1(1 − θ)α0−1 (23)

where the gamma function is defined as

Γ(x) =

∫

∞

0

ux−1e−udu (24)

Note that Γ(x + 1) = xΓ(x) and Γ(1) = 1. Also, for integers, Γ(x + 1) = x!. Note that Stirling’s
approximation gives

log Γ(x + 1) ≈ x log x − x (25)

Also, the beta function is define as

B(a, b) =
Γ(a)Γ(b)

Γ(a + b)
(26)

The normalization constant

1/Z(α1, α0) =
Γ(α1 + α0)

Γ(α1)Γ(α0)
(27)

ensures
∫ 1

0

Beta(θ|α1, α0)dθ = 1 (28)

If θ ∼ Beta(α1, α0), then we have the following properties

mean =
α1

α1 + α0
(29)

mode =
α1 − 1

α1 + α0 − 2
(30)

Var =
α1α0

(α1 + α0)2(α1 + α0 − 1)
(31)

See Figure 1 for some plots of some beta distributions, and Table 1 for some typical values.
α1 = α0 = 1 is a uniform prior, also called the Laplace prior, and is often considered an uniformative

prior, since then θ̂MAP = θ̂MLE (see below). However, α1 = α0 = 1/2 is also an uniformative prior (called
Jeffrey’s prior), since the prior variance is infinite.
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Figure 1: Some beta Be(a, b) distributions.

2.4 Updating a beta distribution

If we start with a beta prior Beta(θ|α1, α0) and see N1 heads and N0 tails, we end up with a beta posterior
Beta(θ|α1 + N1, α0 + N0):

p(θ|D) =
1

p(D)
p(D|θ)p(θ|α1, α0) (32)

=
1

p(D)
[θN1(1 − θ)N0 ]

1

Z(α1, α0)
[θα1−1(1 − θ)α0−1] (33)

= Beta(θ|N1 + α1, N0 + α0) (34)

For example, suppose we start with Beta(θ|α1 = 2, α0 = 2) and observe x = 1, so N1 = 1, N0 = 0; then
the posterior is Beta(θ|α1 = 3, α0 = 2). So the mean shifts from E[θ] = 2/4 to E[θ|D] = 3/5. We can plot
the prior and posterior, as in Figure 2.

We can also perform the updating sequentially. Suppose we start with beta prior Beta(θ|α1, α0). If we
observe N trials with N1 heads and N0 tails, then the posterior becomes

p(θ|α1, α0, N1, N0) = Beta(θ; α1 + N1, α0 + N0) = Beta(θ; α′

1, α
′

0) (35)

where α′

1, α
′

0 are the parameters of the new prior. If we observe another N ′ trials with N ′

1 heads and N ′

0

tails, then the posterior becomes

p(θ|α′

1, α
′

0, N
′

1, N
′

0) = Beta(θ; α′

1 + N ′

1, α
′

0 + N ′

0) (36)

= Beta(θ; α1 + N1 + N ′

1, α0 + N0 + N ′

0) (37)

So we see that sequentially absorbing data in any order is equivalent to batch updating (assuming iid data
and exact Bayesian updating). This is useful for online learning and for processing large datasets, since
we don’t need to store the original data.
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Figure 2: Updating a Beta(2, 2) prior with sufficient statistics N1 = 1,N0 = 0 to yield a Beta(3, 2) posterior.
The mean shifts from 0.5 to 0.6. Note that the likelihood is just a line, since p(X |θ) = θ.

2.5 Marginal likelihood *

The marginal likelihood, p(D), is the normalization constant in the denominator of Bayes rule:

p(θ|D) =
p(θ)p(D|θ)

p(D)
(38)

Hence

p(D) =

∫

p(θ)p(D|θ)dθ (39)

If we are only interested in parameter estimation, we do not need to compute this constant, but it is necessary
for choosing between different models, as we will see later.

Since the posterior is normalized,

1

Z(α1 + N1, α0 + N0)
=

1

P (D)

1

Z(α1, α0)
(40)

Hence the marginal likelihood is the ratio of the normalizing constants:

p(D) =
Z(α1 + N1, α0 + N0)

Z(α1, α0)
(41)

=
Γ(α1 + N1)Γ(α0 + N0)

Γ(α1 + α0 + N)

Γ(α1 + α0)

Γ(α1)Γ(α0)
(42)

Here is an alternative derivation of this fact. By the chain rule of probability,

p(x1:N ) = p(x1)p(x2|x1)p(x3|x1:2) . . . (43)

Also, as we show in Section 2.6, after N data cases, we have

p(X = k|D1:N ) =
Nk + αk
∑

i Ni + αi

def
=

Nk + αk

N + α
(44)

Now suppose D = H, T, T, H, H, H or D = 1, 0, 0, 1, 1, 1. Then

p(D) =
α1

α
·

α0

α + 1
·
α0 + 1

α + 2
·
α1 + 1

α + 3
·
α1 + 2

α + 4
(45)

=
[α1(α1 + 1)(α1 + 2)] [α0(α0 + 1)]

α(α + 1) · · · (α + 4)
(46)

=
[(α1) · · · (α1 + N1 − 1)] [(α0) · · · (α0 + N0 − 1)]

(α) · · · (α + N)
(47)
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For integers,

(α)(α + 1) · · · (α + M − 1) (48)

=
(α + M − 1)!

(α − 1)!
(49)

=
(α + M − 1)(α + M − 2) · · · (α + M − M)(α + M − M − 1) · · · 2 · 1

(α − 1)(α − 2) · · · 2 · 1
(50)

=
(α + M − 1)(α + M − 2) · · · (α)(α − 1) · · · 2 · 1

(α − 1)(α − 2) · · · 2 · 1
(51)

For reals, we replace (α − 1)! with Γ(α). Hence

p(D) =
[(α1) · · · (α1 + N1 − 1)] [(α0) · · · (α0 + N0 − 1)]

(α) · · · (α + N)
(52)

=
Γ(α)

Γ(α + N)
·
Γ(α1 + N1)

Γ(α1)
·
Γ(α0 + N0)

Γ(α0)
(53)

2.6 Posterior predictive distribution

The prior predicted probability of heads can be computed as follows:

p(X = 1) =

∫ 1

0

p(X = 1|θ)p(θ)dθ (54)

=

∫ 1

0

θ p(θ)dθ = E[θ] =
α1

α0 + α1
(55)

The posterior predicted probability of heads, given the data, can be computed as follows:

p(X = 1|D) =

∫ 1

0

p(X = 1|θ)p(θ|D)dθ (56)

=

∫ 1

0

θ p(θ|D)dθ = E[θ|D] =
N1 + α1

α0 + α1 + N
(57)

With a uniform prior α1 = α0 = 1, we get Laplace’s rule of succession

p(X = 1|N1, N0) =
N1 + 1

N1 + N0 + 2
(58)

This avoids the sparse data problem we encountered earlier.

2.7 Predictive distribution for Binomials *

If you lookup the predictive distribution for the binomial distribution with beta prior in a textbook (such as
[BS94]), you will find it called the binomial-beta distribution, defined as

p(x) =

∫ 1

0

Bi(x|θ, n)Beta(θ|α1, α0)dθ (59)

def
= Bb(x|α0, α1, n) (60)

=
B(x + α1, n − x + α0)

B(α1, α0)

(

n
x

)

(61)

where B(α1, α0) is the beta function

B(α1, α0) =
Γ(α1)Γ(α0)

Γ(α1 + α0)
(62)
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The posterior predictive is the same, but with updated hyper-parameters: α′

0 = α0 + N0, α′

1 = α1 + N1.
The mean and variance of the binomial-beta are given by

E [x] = n
α1

α0 + α1
(63)

Var [x] =
nα0α1

(α0 + α1)2
(α0 + α1 + n)

α0 + α1 + 1
(64)

Let us verify this gives the same result as the (prior) predictive derived above for the Bernoulli distribution
(in which case n = 1):

p(X = 1) = Bb(1|α1, α0, 1) (65)

=
Γ(α1 + α0)

Γ(α1)Γ(α0)Γ(α1 + α0 + 1)

(

1
1

)

Γ(α1 + 1)Γ(α0 + 1 − 1) (66)

=
Γ(α1 + α0)

Γ(α1)Γ(α0)(α1 + α0)Γ(α1 + α0)
αΓ(α1)Γ(α0) (67)

=
α1

α1 + α0
(68)

where we used the fact thta Γ(α0 + α1 + 1) = (α0 + α + 1)Γ(α0 + α1).

2.8 Point estimation

The MAP estimate is given by

θ̂MAP = argmax
θ

p(D|θ)p(θ) (69)

= argmax
θ

Be(α1 + N1, α0 + N0) (70)

=
α1 + N1 − 1

α1 + α0 + N − 2
(71)

So if α1 = α0 = 1, then θ̂MAP = θ̂MLE . Hence using a Beta(1, 1) prior with a plug-in estimate

p(X = 1|θ̂MAP ) = θ̂MAP (72)

will suffer from the sparse data problem. However, if we use the posterior mean

θ̂mean =

∫

θp(θ|D) (73)

=
α1 + N1

α1 + α0 + N
(74)

then we get the same result as the the predictive distribution, which does not suffer from the sparse data
problem.

2.9 Effect of prior strength

Let N = N1 + N0 be number of samples (observations). Let N ′ be the number of pseudo observations
(strength of prior) and define the prior means as fractions of N ′:

α1 = N ′α′

1, α0 = N ′α′

2, (75)

where

0 < α′

1, α
′

0 < 1 (76)

α′

1 + α′

0 = 1 (77)
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Then posterior mean is a convex combination of the prior mean and the MLE

p(X = 1|α1, α0, N1, N0) =
α1 + N1

α1 + N1 + α0 + N0
(78)

=
N ′α′

1 + N1

N + N ′
(79)

=
N ′

N + N ′
α′

1 +
N

N + N ′

N1

N
(80)

= λα′

1 + (1 − λ)
N1

N
(81)

where λ = N ′/(N + N ′).
Suppose we have a uniform prior α′

1 = α′

0 = 0.5, and we observe N1 = 3, N0 = 7. If we have a weak
prior N ′ = 2, the posterior prediction is

p(X = 1|α1 = 1, α0 = 1, N1 = 3, N0 = 7) =
3 + 1

3 + 1 + 7 + 1
=

1

3
≈ 0.33 (82)

If we have a strong prior N ′ = 20, the posterior prediction is prediction:

p(X = 1|α1 = 10, α0 = 10, N1 = 3, N0 = 7) =
3 + 10

3 + 10 + 7 + 10
=

13

30
≈ 0.43 (83)

So with a strong prior, new data moves us less far away from the prior mean.
Now imagine we are performing sequential updating of our estimate. The MLE can change dramatically

with small sample sizes. The Bayesian estimate changes much more smoothly, depending on the strength of
the prior. See Figure 3.

Eventually, if we have enough data, it washes away the prior. For example, if we observe N1 = 300,
N0 = 700, then it doesn’t matter if our prior strenght is N ′ = 2 or N ′ = 20, since

300 + 1

1000 + 2
≈

300 + 10

1000 + 20
≈ 0.3 (84)

As N → ∞, p(θ|D) → δ(θ − θ̂MLE), so E[θ|D] → θ̂MLE . So the posterior mode converges to the MLE.

2.10 Setting the hyperparameters*

To set the hyper parameters, suppose your prior is that the probability of heads should be about p, and you
believe this prior with strength equivalent to about N = 1 samples (see below). Then you just solve the
following equations for α1, α0:

p =
α1

α1 + α0
(85)

N = α1 + α0 (86)

So we find the very intuitive result that we set α1 to the expected number of heads, α1 = Np, and α0 to the
expected number of tails, α0 = N − Np.

If we do not know the values of α1, α0, or some equivalent information, we may either put priors on
the hyperparameters, or one may adopt an empirical Bayes approach, also called type II maximum
likelihood, in which we optimize the marginal likelihood wrt the hyperparameters:

~̂α = argmax
~α

p(D|~α) (87)

For details on how to do this, see [Min00].
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Figure 3: Posterior update as data streams in for different prior strenghts. Lower blue=MLE, red = beta(1,1),
pink = beta(5,5), upper blue = beta(10,10).. Source: [KF06].
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Prior

p(θ|α1, α0) = Be(θ|α1, α0) =
1

Z(α1, α0)
θα1−1(1 − θ)α0−1 (90)

Z(α1, α0) =
Γ(α1 + α0)

Γ(α1)Γ(α0)
(91)

Likelihood (where N0, N1 are the counts derived from the data D)

p(D|θ) = θN1(1 − θ)N0 (92)

Posterior

p(θ|D, α1, α0) =
1

Z(α1, α0)
p(D|α1, α0)θ

α1+N1−1(1 − θ)α0+N0−1 (93)

= Be(α1 + N1, α0 + N0) = Be(α′

1, α
′

0) (94)

Marginal likelihood (evidence):

p(D|α1, α0) =
Z(α′

1, α
′

0)

Z(α1, α0)
=

Γ(α′

1)Γ(α′

0)

Γ(α′

1 + α′

0)

Γ(α1 + α0)

Γ(α1)Γ(α0)
(95)

Posterior predictive

p(X = 1|D, α1, α0) =
α′

1

α′

1 + α′

0

=
α1 + N1

α1 + α0 + N
(96)

Figure 4: Summary of results for the Beta-Bernoulli model.

2.11 Non-informative prior

One might think that, since Beta(1, 1) is a uniform distribution, that this would be an uniformative prior.
But the posterior mean in this case is

E[θ|D] =
N1 + 1

N1 + N0 + 2
(88)

whereas the MLE is N1

N1+N0

. Clearly by decreasing the magnitude of the pseudo counts, we we can lessen

the impact of the prior. Jeffreys’ prior in this case is α1 = α0 = 1
2 . However, by the above argument, the

most non-informative prior is
lim
c→0

Beta(c, c) (89)

which is a mixture of two equal point masses at 0 and 1 (see [ZL04] for a proof). This is also called the
Haldane prior. Note that it is an improper priorm in the sense that

∫

Be(θ|0, 0dθ = ∞. For a Gaussian,
the maximum variance distribution is flattest, but for a Beta (because of its compact support in 0:1), the
maximum variance distribution is this mixture of spikes.

2.12 Summary

We can summarize all our results for the Beta-Bernoulli model as shown in Figure 4.
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3 Multinomials

Let X ∈ {1, . . . , K} be a categorical random variable with K states, and p(X = j) = θj . Then

p(X |θ) = Mu(X |θ) =

K
∏

j=1

θ
I(X=j)
j (97)

is called a multinomial distribution, where I(x = j) = 1 if x = j and I(x = j) = 0 otherwise. (Sometimes
we will use the notation δ(x − j) instead.) Sometimes we will represent categorical variables as bit vectors,
using a 1-of-K encoding: if x = j then xj = 1 and xj′ = 0 for j′ 6= j (e.g., if K = 3, x = 3 maps to
(0, 0, 1)). Then we can write

p(x|θ) =

K
∏

j=1

θ
xj

j (98)

The likelihood for a sequence D = (x1, . . . , xN ) of data is

p(D|θ) =
N
∏

n=1

K
∏

j=1

θ
I(xn=j)
j =

∏

j

θ
Nj

j (99)

where Nj =
∑

n I(xn = j) is the number of times X = j. The likelihood of a given number of counts

N1, . . . , NK out of N trials is

p(N1, . . . , NK |N) = Mu(θ, N) =

(

N
N1 · · ·NK

)

∏

j

θ
Nj

j (100)

This is also called a multinomial distribution. Note that it defines a distribution on counts, not on
sequences. We shall not need this distribution in this book.

3.1 Maximum likelihood estimation

The log-likelihood is

`(θ) = log p(D|θ) =
∑

k Nk log θk (101)

We need to maximize this subject to the constraint
∑

k θk = 1, so we use a Lagrange multiplier. The
constrained cost function becomes

˜̀ =
∑

k

Nk log θk + λ

(

1 −
∑

k

θk

)

(102)

Taking derivatives wrt θk yields

∂ ˜̀

∂θk

=
Nk

θk

− λ = 0 (103)

Taking derivatives wrt λ yields the original constraint:

∂ ˜̀

∂λ
=

(

1 −
∑

k

θk

)

= 0 (104)
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Using this sum-to-one constraint we have

Nk = λθk (105)
∑

k

Nk = λ
∑

k

θk (106)

N = λ (107)

θ̂ML
k =

Nk

N
(108)

Hence θ̂ML
k is the fraction of times k occurs. If we did not observe X = k in the training data, we set

θ̂ML
k = 0, so we have the same sparse data problem as in the Bernoulli case (in fact it is worse, since K may

be large, so it is quite likely that we didn’t see some of the symbols, especially if our data set is small).

3.2 Conjugate Bayesian analysis

Let X ∈ {1, . . . , K} have a multinomial distribution

p(X |θ) = θ
I(X=1)
1 θ

I(X=2)
2 · · · θ

I(X=k)
K (109)

In other words, p(X = j|θ) = θj . For a set of data X1:N , the sufficient statistics are the counts Nj =
∑

n I(Xn = j). The conjugate prior is called Dirichlet, and has parameters α

p(θ|α) = D(θ|α) =
1

Z(α)
· θα1−1

1 · θα0−1
2 · · · θαK−1

K I(

K
∑

k=1

θk − 1) (110)

where the I term ensures the parameters sum to one, and Z(α) is the normalizing constant

Z(α) =

∫

· · ·

∫

θα1−1
1 · · · θαK−1

K dθ1 · · · dθK (111)

=

∏K

j=1 Γ(αj)

Γ(
∑K

j=1 αj)
(112)

See Figure 5 for some examples of Dirichlet distributions.

αj can be thought of as a pseudo-count for state j, and α
def
=
∑K

k=1 αk is the total strenght of the prior.
If θ ∼ Dir(θ|α1, . . . , αK), then we have these properties

E[θk] =
αk

α
(113)

mode[θk] =
αk − 1

α − K
(114)

Var [θk] =
αk(α − αk)

α2(α + 1)
(115)

Bayesian analysis with a Dirichlet prior is analogous to the beta-bernoulli case: we summarize the results
in Figure 6. It is common to use the prior

~α = (α′, . . . , α′) (116)

where Kα′ is the prior strength. Often we set α′ = 1/K (Jeffrey’s prior) or α′ = 1 (uniform prior).
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Figure 5: The Dirichlet distribution when K = 3 defines a distribution over the 2-simplex, which can be
represented by a triangle. Parameter settings, clockwise from top-left: α = (6, 2, 2), α = (3, 7, 5), α(6, 2, 6),
α = (2, 3, 4). Source: http://en.wikipedia.org/wiki/Dirichlet_distribution.

4 Mixtures of conjugate priors *

In addition, we have assumed conjugate priors for mathematical convenience. A simple way to extend the
flexibility of the prior, while maintaining tractability, is to use a mixture of Dirichlets, since mixtures of
conjugate priors are still conjugate. This has been used in DNA sequence alignment [BHK+93], for example.
In this case, the prior is that each location is likely to be a “pure” distribution over A, C, G or T, but we
don’t know which; we can express this prior as follows:

p(~α) = w1Dir(~α|1, 0, 0, 0) + w2Dir(~α|0, 1, 0, 0) + w3Dir(~α|0, 0, 1, 0) + w4Dir(~α|0, 0, 0, 1) (117)

where wi are the mixing weights. Initially wi = 1
4 , but we can update the posterior distribution over these

weights, when we discover what kind of base is present in this sequence location.
In general, we are free to use any kind of prior we want, but if it is not conjugate, we have to resort to

numerical methods to compute the posterior.
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Prior

p(θ|~α) = Dir(θ|~α) =
1

Z(α)
· θα1−1

1 · θα−1
2 · · · θαK−1

K (118)

Z(~α) =

∏K
i=1 Γ(αi)

Γ(
∑K

i=1 αi)
(119)

Likelihood (where Nj =
∑

n I(Xn = j) are the counts)

p(D|~θ) =

K
∏

j=1

θ
Nj

j (120)

Posterior

p(θ|D, ~α) =
1

Z(α)p( ~N |α)
θα1+N1−1
1 · · · θαK+Nk−1

K (121)

= Dir(α1 + N1, . . . , αK + NK) = Dir(α′

1, . . . , α
′

K) (122)

Marginal likelihood (evidence):

p(D|~α) =
Z( ~N + ~α)

Z(~α)
=

Γ(
∑

k αk)

Γ(N +
∑

k αk)

∏

k

Γ(Nk + αk)

Γ(αk)
(123)

Posterior predictive

p(x = j|D, ~α) =
α′

j
∑

k α′

k

=
αj + Nj

N +
∑

k αk

(124)

Figure 6: Summary of results for the Dirichlet-multinomial model.

15



[ZL04] M. Zhu and A. Lu. The counter-intuitive non-informative prior for the bernoulli family. J.

Statistics Education, 2004.

16


